Thursday, October 25, 2018

[STM32] Reading / writing SD card with SPI + FatFS

https://github.com/SAKET71193/stm32_SpiMmc_fatfs

Reference: https://blog.domski.pl/using-fatfs-with-hal/ 
Reference: http://www.dejazzer.com/ee379/lecture_notes/lec12_sd_card.pdf


* access SD card using SPI method

Tools:- keil, stm32cube mx.
Hardware:- stm32f4 discovery board.

create stm32cube mx project.

select fatfs,rcc,spi(full duplex)


select pins as follows

PA4 - cs
PA5 - clk
PA6 - miso
PA7 - mosi



The system clock is set to 72MHz,
On the Configuration tab, select the FASFS item from the Middleware item and add it.
Open the FASTFS settings and change the settings as shown below.
Select the USE_LFN entry to modify it to support long file names, and modify the MSS value to 4096.

Now open the SPI item and set the Baud Rate value.



Add two files in your created project



# fatfs_sd.h - > https://github.com/SAKET71193/stm32_SpiMmc_fatfs/blob/master/Inc/fatfs_sd.h

Add timer1&2 - stm32f1xx_it.c 
Add  10ms timers Timer1 and Timer2 mentioned in fatfs_sd.c above are handled by SysTick_Handler as shown below.
* Includes ------------------------------------------------------------------*/
 #include "stm32f4xx_hal.h"
 #include "stm32f4xx.h"
 #include "stm32f4xx_it.h"

 /* USER CODE BEGIN 0 */
 volatile uint8_t FatFsCnt = 0;
 volatile uint8_t Timer1, Timer2;
 void SDTimer_Handler(void) { if(Timer1 > 0) Timer1--; if(Timer2 > 0) Timer2--; }

 /* USER CODE END 0 */
 /* External variables --------------------------------------------------------*/ /********************************************************************/
 /* Cortex-M3 Processor Interruption and Exception Handlers */ /*******************************************************************/
 /** * @brief This function handles System service call via SWI instruction. */

 void SVC_Handler(void) {
 /* USER CODE BEGIN SVCall_IRQn 0 */
 /* USER CODE END SVCall_IRQn 0 */
 /* USER CODE BEGIN SVCall_IRQn 1 */
 /* USER CODE END SVCall_IRQn 1 */
 }

 /** * @brief This function handles Pendable request for system service. */

 void PendSV_Handler(void)
 {
 /* USER CODE BEGIN PendSV_IRQn 0 */
 /* USER CODE END PendSV_IRQn 0 */
 /* USER CODE BEGIN PendSV_IRQn 1 */
 /* USER CODE END PendSV_IRQn 1 */
 }

 /** * @brief This function handles System tick timer. */

 void SysTick_Handler(void)
 {
 /* USER CODE BEGIN SysTick_IRQn 0 */
 FatFsCnt++;
    if(FatFsCnt >= 10)
    {
     FatFsCnt = 0;
     SDTimer_Handler();
    }

 /* USER CODE END SysTick_IRQn 0 */
 HAL_IncTick();
 HAL_SYSTICK_IRQHandler();

 /* USER CODE BEGIN SysTick_IRQn 1 */
 /* USER CODE END SysTick_IRQn 1 */

 }


User_diskio.c 

Now you have written the driver code and wrote the code to call the driver code written in user_diskio.c file as mentioned above.


#ifdef USE_OBSOLETE_USER_CODE_SECTION_0 /* * Warning: the user section 0 is no more in use (starting from CubeMx version 4.16.0) * To be suppressed in the future. * Kept to ensure backward compatibility with previous CubeMx versions when * migrating projects. * User code previously added there should be copied in the new user sections before * the section contents can be deleted. */ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ #endif /* USER CODE BEGIN DECL */ /* Includes ------------------------------------------------------------------*/ #include <string.h> #include "ff_gen_drv.h" /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ #include "fatfs_sd.h" /* Private variables ---------------------------------------------------------*/ /* Disk status */ static volatile DSTATUS Stat = STA_NOINIT; /* USER CODE END DECL */ /* Private function prototypes -----------------------------------------------*/ DSTATUS USER_initialize (BYTE pdrv); DSTATUS USER_status (BYTE pdrv); DRESULT USER_read (BYTE pdrv, BYTE *buff, DWORD sector, UINT count); #if _USE_WRITE == 1 DRESULT USER_write (BYTE pdrv, const BYTE *buff, DWORD sector, UINT count); #endif /* _USE_WRITE == 1 */ #if _USE_IOCTL == 1 DRESULT USER_ioctl (BYTE pdrv, BYTE cmd, void *buff); #endif /* _USE_IOCTL == 1 */ Diskio_drvTypeDef USER_Driver = { USER_initialize, USER_status, USER_read, #if _USE_WRITE USER_write, #endif /* _USE_WRITE == 1 */ #if _USE_IOCTL == 1 USER_ioctl, #endif /* _USE_IOCTL == 1 */ }; /* Private functions ---------------------------------------------------------*/ /** * @brief Initializes a Drive * @param pdrv: Physical drive number (0..) * @retval DSTATUS: Operation status */ DSTATUS USER_initialize ( BYTE pdrv /* Physical drive nmuber to identify the drive */ ) { /* USER CODE BEGIN INIT */ return SD_disk_initialize(pdrv); /* USER CODE END INIT */ } /** * @brief Gets Disk Status * @param pdrv: Physical drive number (0..) * @retval DSTATUS: Operation status */ DSTATUS USER_status ( BYTE pdrv /* Physical drive number to identify the drive */ ) { /* USER CODE BEGIN STATUS */ return SD_disk_status(pdrv); /* USER CODE END STATUS */ } /** * @brief Reads Sector(s) * @param pdrv: Physical drive number (0..) * @param *buff: Data buffer to store read data * @param sector: Sector address (LBA) * @param count: Number of sectors to read (1..128) * @retval DRESULT: Operation result */ DRESULT USER_read ( BYTE pdrv, /* Physical drive nmuber to identify the drive */ BYTE *buff, /* Data buffer to store read data */ DWORD sector, /* Sector address in LBA */ UINT count /* Number of sectors to read */ ) { /* USER CODE BEGIN READ */ return SD_disk_read(pdrv, buff, sector, count); /* USER CODE END READ */ } /** * @brief Writes Sector(s) * @param pdrv: Physical drive number (0..) * @param *buff: Data to be written * @param sector: Sector address (LBA) * @param count: Number of sectors to write (1..128) * @retval DRESULT: Operation result */ #if _USE_WRITE == 1 DRESULT USER_write ( BYTE pdrv, /* Physical drive nmuber to identify the drive */ const BYTE *buff, /* Data to be written */ DWORD sector, /* Sector address in LBA */ UINT count /* Number of sectors to write */ ) { /* USER CODE BEGIN WRITE */ /* USER CODE HERE */ return SD_disk_write(pdrv, buff, sector, count); /* USER CODE END WRITE */ } #endif /* _USE_WRITE == 1 */ /** * @brief I/O control operation * @param pdrv: Physical drive number (0..) * @param cmd: Control code * @param *buff: Buffer to send/receive control data * @retval DRESULT: Operation result */ #if _USE_IOCTL == 1 DRESULT USER_ioctl ( BYTE pdrv, /* Physical drive nmuber (0..) */ BYTE cmd, /* Control code */ void *buff /* Buffer to send/receive control data */ ) { /* USER CODE BEGIN IOCTL */ return SD_disk_ioctl(pdrv, cmd, buff); /* USER CODE END IOCTL */ } #endif /* _USE_IOCTL == 1 */

4. Sample Code 
Now that all the driver-related tasks have been completed, you can use the FatFS API function to create a simple text file, write the contents, and write the code to read the file again


/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "stm32f4xx_hal.h"
#include "fatfs.h"

/* USER CODE BEGIN Includes */


/* USER CODE END Includes */


/* Private variables ---------------------------------------------------------*/

SPI_HandleTypeDef hspi1;

FATFS fs;

FATFS *pfs;
FIL fil;
FRESULT fres;
DWORD fre_clust;
uint32_t total, free1;
char buffer[100];

/* USER CODE BEGIN PV */

/* Private variables ---------------------------------------------------------*/

/* USER CODE END PV */


/* Private function prototypes -----------------------------------------------*/

void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_SPI1_Init(void);

/* USER CODE BEGIN PFP */

/* Private function prototypes -----------------------------------------------*/

/* USER CODE END PFP */


/* USER CODE BEGIN 0 */


/* USER CODE END 0 */


/**

  * @brief  The application entry point.
  *
  * @retval None
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */


  /* MCU Configuration----------------------------------------------------------*/


  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */

  HAL_Init();

  /* USER CODE BEGIN Init */


  /* USER CODE END Init */


  /* Configure the system clock */

  SystemClock_Config();

  /* USER CODE BEGIN SysInit */


  /* USER CODE END SysInit */


  /* Initialize all configured peripherals */

  MX_GPIO_Init();
  MX_FATFS_Init();
  MX_SPI1_Init();
  /* USER CODE BEGIN 2 */
  //HAL_GPIO_WritePin(GPIOA,GPIO_PIN_4,GPIO_PIN_SET);
  //HAL_Delay(10);
  
/* USER CODE END 2 */
  /* Mount SD Card */
  if(f_mount(&fs, "", 0) != FR_OK)
    _Error_Handler(__FILE__, __LINE__);
  
  /* Open file to write */
  if(f_open(&fil, "second.py", FA_OPEN_ALWAYS | FA_READ | FA_WRITE) != FR_OK)
    _Error_Handler(__FILE__, __LINE__);
  
  /* Check free space */
  if(f_getfree("", &fre_clust, &pfs) != FR_OK)
    _Error_Handler(__FILE__, __LINE__);
  
  total = (uint32_t)((pfs->n_fatent - 2) * pfs->csize * 0.5);
  free1 = (uint32_t)(fre_clust * pfs->csize * 0.5);   
    
  /* Free space is less than 1kb */
  if(free1 < 1)
    _Error_Handler(__FILE__, __LINE__);  
  
  /* Writing text */
  f_puts("SAKET\n", &fil);  
  f_puts("KIRANGE!!!", &fil);
  
  /* Close file */
  if(f_close(&fil) != FR_OK)
    _Error_Handler(__FILE__, __LINE__);  
  
  /* Open file to read */
  if(f_open(&fil, "second.py", FA_READ) != FR_OK)
    _Error_Handler(__FILE__, __LINE__);
  
  while(f_gets(buffer, sizeof(buffer), &fil))
  {
    //printf("%s", buffer);
  }
  
  /* Close file */
  if(f_close(&fil) != FR_OK)
    _Error_Handler(__FILE__, __LINE__);     
  
  /* Unmount SDCARD */
  if(f_mount(NULL, "", 1) != FR_OK)
    _Error_Handler(__FILE__, __LINE__);  
  
  
  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {

  /* USER CODE END WHILE */


  /* USER CODE BEGIN 3 */


  }

  /* USER CODE END 3 */

}


/**

  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{

  RCC_OscInitTypeDef RCC_OscInitStruct;

  RCC_ClkInitTypeDef RCC_ClkInitStruct;

    /**Configure the main internal regulator output voltage 

    */
  __HAL_RCC_PWR_CLK_ENABLE();

  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);


    /**Initializes the CPU, AHB and APB busses clocks 

    */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 8;
  RCC_OscInitStruct.PLL.PLLN = 144;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = 4;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

    /**Initializes the CPU, AHB and APB busses clocks 

    */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)

  {
    _Error_Handler(__FILE__, __LINE__);
  }

    /**Configure the Systick interrupt time 

    */
  HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);

    /**Configure the Systick 

    */
  HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);

  /* SysTick_IRQn interrupt configuration */

  HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
}

/* SPI1 init function */

static void MX_SPI1_Init(void)
{

  /* SPI1 parameter configuration*/

  hspi1.Instance = SPI1;
  hspi1.Init.Mode = SPI_MODE_MASTER;
  hspi1.Init.Direction = SPI_DIRECTION_2LINES;
  hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
  hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
  hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
  hspi1.Init.NSS = SPI_NSS_SOFT;
  hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8;
  hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
  hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
  hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  hspi1.Init.CRCPolynomial = 10;
  if (HAL_SPI_Init(&hspi1) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

}


/** Configure pins as 

        * Analog 
        * Input 
        * Output
        * EVENT_OUT
        * EXTI
*/
static void MX_GPIO_Init(void)
{

  GPIO_InitTypeDef GPIO_InitStruct;


  /* GPIO Ports Clock Enable */

  __HAL_RCC_GPIOH_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();

  /*Configure GPIO pin Output Level */

  HAL_GPIO_WritePin(GPIOA, GPIO_PIN_4, GPIO_PIN_SET);

  /*Configure GPIO pin : PA4 */

  GPIO_InitStruct.Pin = GPIO_PIN_4;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

}


/* USER CODE BEGIN 4 */


/* USER CODE END 4 */


/**

  * @brief  This function is executed in case of error occurrence.
  * @param  file: The file name as string.
  * @param  line: The line in file as a number.
  * @retval None
  */
void _Error_Handler(char *file, int line)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  while(1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT

/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t* file, uint32_t line)

  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}

#endif /* USE_FULL_ASSERT */